Back to RESK
     ██████╗ ███╗   ██╗ ██████╗ ███╗   ███╗
    ██╔════╝ ████╗  ██║██╔═══██╗████╗ ████║
    ██║  ███╗██╔██╗ ██║██║   ██║██╔████╔██║
    ██║   ██║██║╚██╗██║██║   ██║██║╚██╔╝██║
    ╚██████╔╝██║ ╚████║╚██████╔╝██║ ╚═╝ ██║
     ╚═════╝ ╚═╝  ╚═══╝ ╚═════╝ ╚═╝     ╚═╝
    
    ┌───────────────────────────────────────┐
    │   Graph Neural Network Monitoring      │
    │           by RESK Security             │
    └───────────────────────────────────────┘
    

When Traditional Security meets Graph Neural Networks

GNOM is an advanced security solution powered by Graph Neural Networks (GNN) developed by RESK Security. It transforms your network infrastructure into a dynamic graph structure for real-time threat detection and vulnerability assessment.

Key Features

Core Features

╔═══════════════════════════════════════╗ ║ Enterprise Network ║ ║ ┌──────┐ ┌──────┐ ┌──────┐ ║ ║ │Server ├────┤Switch├────┤ PC │ ║ ║ └──────┘ └──────┘ └──────┘ ║ ║ │ │ │ ║ ║ ┌──────┐ ┌──────┐ ┌──────┐ ║ ║ │Firewall │Router│ │Printer│ ║ ║ └──────┘ └──────┘ └──────┘ ║ ╚═══════════════════════════════════════╝ │ ▼ ╔═══════════════════════════════════════╗ ║ Conversion to GNN structure ║ ║ [Node]───(Edge)───[Node]───(Edge) ║ ║ │ │ ║ ║ │ │ ║ ║ (Edge) (Edge) ║ ║ │ │ ║ ║ [Node]───(Edge)───[Node] ║ ╚═══════════════════════════════════════╝ │ ▼ ╔═══════════════════════════════════════╗ ║ GNN Model ║ ║ ┌─────────────────────┐ ║ ║ │ GNN Conv. Layers │ ║ ║ │ [A] → [H] → [Z] │ ║ ║ └─────────────────────┘ ║ ║ ┌─────────────────────┐ ║ ║ │ Node Aggregation │ ║ ║ └─────────────────────┘ ║ ╚═══════════════════════════════════════╝ │ ▼ ╔═══════════════════════════════════════╗ ║ RL Agent ║ ║ ┌─────────────────────────┐ ║ ║ │ State │ Action │ Reward │ ║ ║ └─────────────────────────┘ ║ ║ │ Policy π(s|a) │ ║ ║ │ Value V(s) │ ║ ║ └─────────────────────────┘ ║ ╚═══════════════════════════════════════╝ │ ▼ ╔═══════════════════════════════════════╗ ║ Attack Simulation ║ ║ DDoS Malware Phishing ║ ║ │ │ │ ║ ║ ▼ ▼ ▼ ║ ║ ┌───────────────────────────┐ ║ ║ │ Vulnerability Assessment │ ║ ║ └───────────────────────────┘ ║ ╚═══════════════════════════════════════╝ │ ▼ ╔═══════════════════════════════════════╗ ║ Vulnerability Prediction ║ ║ Risk: Low Medium High ║ ║ [_] [_] [X] ║ ║ ┌───────────────────────────┐ ║ ║ │ Ranking of Risky Nodes │ ║ ║ └───────────────────────────┘ ║ ╚═══════════════════════════════════════╝ │ ▼ ╔═══════════════════════════════════════╗ ║ Security Recommendations ║ ║ 1. Firmware updates ║ ║ 2. Firewall strengthening ║ ║ 3. Employee training ║ ║ 4. Network segmentation ║ ║ 5. Continuous monitoring ║ ╚═══════════════════════════════════════╝

Graph Construction

GNOM converts your network infrastructure into a mathematical graph representation where:

◉ Nodes represent network devices
◉ Edges represent connections and data flows
◉ Node features capture device characteristics
◉ Edge features represent connection properties

GNN Architecture

Our solution employs:

◉ Multiple GNN convolutional layers for deep feature extraction
◉ Advanced node aggregation techniques
◉ Message passing neural networks for information propagation
◉ Attention mechanisms for focusing on critical network segments

Documentation

Technical Overview

GNOM employs cutting-edge graph theory and deep learning to transform security monitoring:

Implementation Guide

Integrating GNOM into your security infrastructure:

◉ Seamless integration with existing SIEM solutions
◉ Compatible with major firewall and IDS/IPS systems
◉ Customizable alert thresholds and reporting
◉ Regular model updates via secure cloud connection

Stay Updated

Subscribe to our newsletter for the latest updates on GNOM features and security trends.

Don't worry, our AI won't read your emails... probably.

We respect your privacy. Your email will be used only for GNOM updates and will never be shared with third parties.